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Physical consequences of action conservation laws and their applications
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A class of conservation laws containing Hamilton’s action integral is introduced for Lagrangian dynamical
systems with a single degree of freedom and for the case when the Lagrangian function depends on the second
time derivative of the coordinate. The action conservation laws are derived from the invariant properties of the
Lagrange-D’ Alembert differential variational principle with respect to infinitesimal transformations of the
generalized coordinate and time by supposing that the generators of infinitesimal transformations depend on
time, a generalized coordinate, and its first and second derivatives with respect to time. These action integral
conservation laws are applied to the stability of columns, heat transfer, Thomas-Fermi problems, and other
physical phenomena. A direct method for the approximate solution of these problems is combined with the Ritz
variational method in order to obtain results of high accuracy.
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I. INTRODUCTION

In this paper we introduce a special class of conservation
laws of Lagrangian dynamical systems with a single degree
of freedom, containing Hamilton’s action integral. The exis-
tence of this class of conservation laws was first noted in [1]
(pp. 144—-149) in the form

lt,x,x) + f L(t,x,x)dt = C = const, (1)

where L(z,x,x) is the given Lagrangian function of the dy-
namical system, 7 is the time, x is the generalized coordinate,
and x=dx/dr is the generalized velocity. The integral in (1) is
usually termed Hamilton’s action integral. It is assumed that
by differentiating (1) with respect to time and using the dif-
ferential equation of motion in the form of the Euler-
Lagrange equation

- e=, @)

expression (1) becomes identical to Eq. (2).

The paper is aimed to the improvement of direct varia-
tional methods for obtaining approximate solutions of vari-
ous Lagrangian systems.

Example A. As a simple example consider the harmonic
oscillator X+Ax=0, whose Lagrangian function is of the
form L=4x’~5x2. The action conservation law is found to be

1 1, X\
Ex)&— J (—xz——xz)dt=C=const. (3)

To demonstrate the utility of this conservation law, we find
the first eigenvalue of the following boundary-value problem
([2], pp. 179-180): i+Ax=0, x(0)=x(1)+x(1)=0. As sug-
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gested in [2], we select an approximate polynomial for x as
x(1)=2035¢— 14001 +2941-36t"+61%, which identically
satisfies the boundary conditions. Substituting this into (3)
we find from C(t=0)=C(t=1) that )\appro,(:%
=4.115 859. The exact solution is the first non-negative root
of the equation tan VA+A=0; i.e., numerical solution of this
equation Ny, =4.115 858 agrees with Ay, up to the sev-
enth significant digit.

In this study we also consider action conservation laws of
the form

o(t,x,x,%,%) + J L(t,x,x,X)dt = D = const (4)
for the Lagrangian L(¢,x,%,%), where ¥=d*x/dt* and whose
Euler-Lagrange equation is

d>dL diL JL
- ..+t -=0 (5)
dr” ox dtdx  ox
Example B. Consider the fourth-order boundary-value
problem
X+NE+20x=0, withx(x1)=%(*1)=0, (6)

whose Lagrangian function is

1., X\
L=—%>——x>+10x%. (7)
27 2

The action conservation law is of the form
1 . 1 1 A
- E(Ax + X)X + —XK — J (—x'z - 5;&2 + 10x2)dr: D = const.

2 2
(8)

The problem (6) represents an inextensible elastic rod pinned
at both ends and loaded by two axial concentrated forces.
The lateral displacement of the rod is resisted by an elastic
distributed force of the Winkler type (for more details see
[6], p. 140). To find the smallest eigenvalue \ for this prob-

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.78.056604

VUJANOVIC, BACLIC, AND STRAUSS

lem, we turn again to an approximate polynomial suggested
in [2] p. 218, x=61-75¢2+15t*~1°, which satisfies identi-
cally the boundary conditions in (6). Substituting this into (8)
and integrating, we find that D(t=—1)=D(t=+1) and that
A=10.573 1, which is identical to the exact solution obtained
by means of a different method ([2], p. 219).

It is of importance to stress that together with the action
conservation law which is usually defined in a given time
interval [#,,7;] we will also use a direct method based on
Hamilton’s variational principle, which states that among all
varied paths (i.e., admissible trajectories) connecting two
given configurations x(f,)=A=const and x(¢;)=B=const, for
the given time interval, the actual motion makes the action
integral [ stationary: namely,

4]
51=5f Ldt=0. 9)
1,

0

For many important practical cases, the Hamilton action in-
tegral I is minimal along the actual motion.

Note that the quantity [L dt is named in several (nonuni-
versal [3], p. 35) ways in the literature [4,5]. We call [L dr
the action as in Goldstein [4], p. 36, and Santilli [3], p. 35,
while Leech [5], p. 58, calls this quantity the Hamilton prin-
cipal function.

In what follows we shall demonstrate that by combining,
at the same time, action conservation laws with Hamilton’s
variational principle, many important linear and nonlinear
and also rheonomic and scleronomic two-point boundary-
value problems can be successfully solved.

It will be demonstrated in the following section that find-
ing the functions (z,x,x) and 6(z,x,x,%,x) figuring in (1)
and (4) is intimately connected with Noether’s theory of
finding the conservation laws of Lagrangian dynamical sys-
tems.

II. TRANSFORMATION PROPERTIES OF CENTRAL
LAGRANGIAN EQUATIONS

A. Case L=L(t,x,x)

In this section we first describe the forms of infinitesimal
transformations used here. The symbol 6 will denote a simul-
taneous or Lagrangian variation: a representative point A
which is on the actual path x(z) is correlated to an infinitesi-
mally close point B occupied at the same instant of time on
the varied path x(7) by the relation

X(1) = x(1) + 6x. (10)

A very important property of simultaneous variations is that
the symbol of variation, &, is commutative with the symbol
of differentiation with respect to time: namely,

d* d*
o\ x) -\ x)o=0. k=123, (11)

At the same time, let us enlarge the class of infinitesimal
variations by taking into account an infinitesimal deforma-
tion of time:
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f=t+At. (12)

We define the generalized (or nonsimultaneous) variation Ax
of the generalized coordinate as

Ax=Sx+xAt, ie., &x=Ax—xAr. (13)
By taking the kth time derivative of this expression and using
(11), we have

dx) _ d* d* .
5(ﬁ>=ﬁ(5x)=;(ﬁx—xm), k=123, ... .

(14)

In what follows we shall suppose that the nonsimultaneous
variations Ax and At depend on the time ¢, generalized coor-
dinate x, generalized velocity X, and for the action integrals
of the form (4), also on the acceleration X. Namely, we first
suppose the following structure of Ax and Ar:

Ax =eF(t,x,%),

Ar=¢f(t,x,x), 0<e<l1, (15)

Oox = e[ F(t,x,x) — xf(t,x,x)] # 0. (16)

We commence our further analysis from the so-called
central Lagrangian equation which is of the form ([7], p.
259)

d(aL
dt

—_5x> =6L, L=L(t,x,%), (17)
ox

as one of the possible forms of the Euler-Lagrangian differ-
ential variational principle.
To derive the differential equation of motion, we note that

oL JL
OL = —obx+ — o, (18)
ox ox

and using this together with the commutative rules (11) we
find immediately

dJL JL
———-—]éx=0, (19)
dtox ox

which is another possible form of the Lagrange-D’ Alembert
variational principle. Supposing that the variation dx is arbi-
trary (i.e., &x#0), we arrive at the Euler-Lagrange differen-
tial equation (2). In doing this the internal structure of the
variation (virtual displacement) is quite irrelevant.

To derive the action conservation law, we start from the
central Lagrangian equation in the form

d{aL oL L
—| —é&|-—é&-—6=0, (20)
dt\ dx ox ox

and express the Lagrangian variations ox and 6x in terms of
generalized variations A [see (13) and (14) for k=1] to ob-
tain
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d JL JL
—{—(Ax xAt)] - —(Ax-xAr)- —(Ax-x A =0.
dt ox ox

21)

Expanding the last two terms on the left-hand side, regroup-
ing, and adding and subtracting %At, we arrive at

d .
E{_(Ax xAt)] —AL+LAt=0, (22)
where
oL oL oL
AL=—At+ —Ax+—Ax (23)
ot ox ox
and
oL oL L .
L=—+—Xx+—x. (24)
ot ox ox

Since L At:%(LAt)—L(At), Eq. (22) can be rewritten as
d| JL
—|:—_(Ax -XxAn)+ LAI] —AL-L(At) =0 (25)
dt| ox

or

d| oL JL JL JL 0.
[ Ax+< ——X)At} - {—At+—Ax+—Ax
dt ox o ox ox

+ L(At)'] =0. (26)

Finally, by introducing the generators of infinitesimal

transformations (15) and noting that Ax=g(F-Xxf), the iden-
tity (26) becomes

d| oL oL \. oL  JL JL .
—| —F+\L-—X|f|-| —f+ —F+—F
dt| ox ¢ ot ox ox

+ (L— %x)f] =0. (27)

By adding and subtracting the Lagrangian function L
=L(t,x,x), one has

d{ JL ( JL ) J } {aL JL .
—F+|L-—x L(t,x,x)dt | - | —F+ —F
dt o ox ox
dL .\, dL N
(oG o -L“’“)} =0 >

From this equation we can derive the following result.

Theorem 1. For the generators of the infinitesimal trans-
formations F=F(t,x,x) and f=f(t,x,x), which identically
satisfy the equation

JL oL . JL 17)
—F+—F+ (L——x)f+—f L(t,x,x)=0, (29)
ox ox 0.

the dynamical system determined by the Lagrangian function
L=L(t,x,x) admits an action conservation law of the form
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oL L _
—F+ <L - —,x>f— J L(t,x,x)dt = const. (30)
ox ox

Note that the condition (29) is usually termed the Noether
identity and from (19) it follows that the generators F and f
are constrained by

ox=¢e(F-xf) #0. (31)

Naturally, if the dynamical system operates in a given
interval of time [,,7,] the integral (30) reads

{‘%F (L-‘;—Lx)f]tl— f Lexd)di=0.  (32)

ox X o 0

B. Case L=L(t,x,x,X)

Let us now consider the transformation properties of the
central Lagrangian equation for the case when Lagrangian
function depends on the first- and second-order derivatives.
For this case the central Lagrangian equation (the Lagrange-
D’Alembert differential variational principle) reads as fol-
lows:

d &L d 07L oL L.
oL — &+ —8&|=0, L=L(tx,xX%).
dt ox dt ox ox

(33)

It is easy to verify that this variational expression leads to the
second form of the Lagrange-D’Alembert principle,

oL daL d2 JL
S =0, (34)

ox dt(?x dt ox

and considering Jox as completely arbitrary, ox# 0, one ar-
rives at the Euler-Lagrange equation (5).

Introducing again the generators of infinitesimal transfor-
mations,

Ax=eF(t,x,x,%), Ar=gf(t,x,x,%), 0<e<1, (35)

Ox = e[ F(t,x,%,%) — xf(t,x,%,X)] # 0, (36)

and substituting this into (33) [or (34)] we have, after easy
but laborious transformations,

JL JL . L .. JL d c?L JL .
e\ = F+—F+—F-|L-—x+ - f— f
ox ox ox ox d tox  ox

d (aL dr?L) L . [ oL
L-A === |F+—F-|L-—%
dr| \ox dtox X ox

(daL aL”. de 0 -
dt&x_ﬁ)& o ! o

where we added and subtracted the Lagrangian function
eL(t,x,,x,%).
From this expression we find the following result.
Theorem 2. For the generators F=F(t,x,x,%¥) and f
=f(t,x,x,X), which identically satisfy the equation
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JL oL . JL .. JL d z?L JL . 0L
F- —x|f-=
dt ox  ox

—F+—F+— L——xX+
ox ox ox ox ot

- L(t,x,%,%) =0, (38)

the dynamical system determined by the Lagrangian function
L=L(t,x,x,X) admits an action conservation law of the form

JL dJL JL . oL d (9L oL
(————__)F+ —F-|L-—i+ ( )x f
ox dt ox X ox dt 9% ax
- f L(t,x,%,%)dt = const. (39)

The authors believe that the both theorems given in this
section represent a specific form of Noether’s theorem suit-
able for finding the action conservation laws of the Lagrang-
ian dynamical systems given by L(z,x,x) and L(¢,x,x,X).

Note that traditionally Noether’s theorem is based upon
the invariant proper ties of the Hamilton action 1ntegral 1
=f ﬁ(l)Ldt with respect to infinitesimal transformations of the

generalized coordinate x and time ¢. However, here we have
used the invariant properties of the central Lagrangian equa-
tion, since the invariant properties of the Lagrange-
D’ Alembert principle are rather terra incognita in analytical
mechanics.

Ending this section we underline that in many practical
situations finding the generators of infinitesimal transforma-
tions F and f for the given Lagrangian function L is not, as a
rule, a difficult task. Thus, for example, for the harmonic
oscillator discussed earlier, it is trivial to verify that for gen-
erators of the form F :%x and /=0, the action integral (3)
follows immediately from (30). Similarly, the problem given
by (6) and (7) has the very same generators and the action
integral (8) follows from (39).

III. IMPLEMENTATION

This section is devoted to a variety of boundary-value
problems that can be analyzed using the action conservation
laws from Theorems 1 and 2. Such an analysis usually con-
sists of finding the unknowns that characterize a given
boundary-value problem. These unknowns, depending on
particular problem, can be the values of the function or its
derivatives at the end points of the interval in a two-point
boundary-value problem or the eigenvalue in a Sturm-
Liouville class of problems. Whatever the unknown is, for a
given second- or fourth-order boundary-value problem, we
recommend the following procedure to be pursued in prac-
tice.

Find L. Verify that the given ordinary differential equation
(ODE) is the Euler-Lagrange equation of the established La-
grangian L.

Find F and f. Use Noether’s identity (29) or (38) to find a
pair of generators F and f for the given Lagrangian L. Each
pair of generators leads to a single conservation law.

'For the exhaustive exposition of the Noether theorem based upon
the Hamilton principle, see [1].
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Establish the conservation law. Use L, F, and f in (30) or
(39).

Apply the conservation law to the end points. Use the
boundary conditions specified for the problem, and this will
yield algebraic relation among the parameters of the bound-
ary value problem that are not specified.

Choose a trial solution. Like in other direct variational
methods, construct a trial solution that satisfies the boundary
conditions of the problem and substitute it in the algebraic
relation obtained in previous step.

Solve. Solution of the algebraic equation yields the miss-
ing value.

This completes a direct procedure for the approximate,
but very reliable, solution of boundary-value problems based
on the utilization of conservation laws of the action type. It is
equally applicable to linear, rheo-linear, and nonlinear
boundary-value problems as will be illustrated on a number
of examples.

However, an important remark should be made concern-
ing the choice of a trial solution with or without adjustable
parameters. A direct method described should always employ
the fact that the action conservation law, when applied to the
end points, contains the functional / =f;1Ldt, which can be
minimized separately with respect to adjustable parameters,
and subsequently its optimal value is to be used in the evalu-
ation of unknowns appearing in the algebraic relation arising
from the conservation law. If the trial solution does not con-
tain any adjustable parameter (like in Examples 1A and 1B),
the unknown value can be obtained directly by applying the
conservation law at the end points since the functional just
becomes a number.

Next, we present several examples illustrating the useful-
ness of the action conservation laws.

A. Estimation of initial slope of the Thomas-Fermi problem

A classical test of various approximation methods is to
estimate the behavior at the origin of the solution to the
Thomas-Fermi differential equation corresponding to the
electron distribution of a neutral atom. The boundary-value
problem to be solved is

L X
X=1/—,
t

The Thomas-Fermi equation has the Lagrangian

in0<r=<ow, x0)=1, x(®)=0. (40)

=P+ 41
X+ ; (41)

for which Noether’s identity (29) becomes identically satis-
fied if the generators are chosen to be F= %x and f=—%t
Consequently, the action conservation law (30) becomes

311, 2 [¥
—xx+ =t| =x*—=1/— | + | Ldt=const, (42)
7 7\2 7 t

and when this is applied to the end points and boundary
conditions from (40) applied one arrives at
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x(0)=- %I(r,x,)&), (43)

where the functional

=1 2 [
I(t,x,)&)=f <—x2+—\/x—)dr.
0 \2 S5Vt

Relations (42)—(44) have been presented by Vujanovi¢ and
Jones ([1], p. 147), but here our aim is to estimate the slope
of the solution at the origin x(0) from Eq. (43) by evaluating

(44)

8776 580 6083° 96a°B

PHYSICAL REVIEW E 78, 056604 (2008)

the value of the functional I=1(7,X,X) at a reliable approxi-
mate solution x(¢).

We will choose a three-parameter trial solution as pro-
posed by Oulne [8] in the form

7(1) =[1 + et + Brexp(—= WP exp(=2avh);  (45)

then, we will use the Ritz method to find the optimal values

of the parameters @, 3, and 7y and finally evaluate I using
these values.

Upon entering the trial function (45) into the functional
and performing the integration, we obtain

la.B,y) =
-3B

+ - + "
15625a  9765625(a+9)"  (4a+19)]°  (Ga+y)]’ 4

+3a4,3[ -58 48 3 840 ]

- +
Qa+7y°® (4a+y* (Ga+y)
4 1920

40 3208 3208 ]

, 192 \ [ ) )
+'8[8(2a+'y)2+(5a+2'y)5}+a'8 42a+7)° Ga+y)?  Ga+y) Ga+29® (da+3y)]

161 280 5763

32
+ =B da+3y)t+ ——m—
33[( a+3y) (Ga+37y)

. 17 280
5a+2y)

80 12 096
] + ?,83{(4a+3y)‘6+

L 2880 ] 1284 s 3+ 1890
_eoor =2 a o o7r
(Ga+29)°]" 3 YT 5a+3y)
Three algebraic equations
&ai(a9ﬁ’ '}’) =0’ ﬁﬁf(a,ﬂ7 ')’) =09 &'yi(aaﬁa 7) =O
(47)
are formed and solved numerically to yield
a=0.706 617, B=-0.557466, 7y=0.368481,
(48)

and the approximate solution to the problem is thus com-
pleted.
The functional at the approximate solution is

1(0.706 617,— 0.557 466,0.368 481) = 0.680 609 627 773,
(49)

which compares well with the exact value ([9], p. 79): I
=0.6806. The initial slope of the solution as obtained by
using (49) in (43) is

%(0) = - 1.588 089 131 47. (50)

This is in perfect agreement with the numerical result
—1.588 071 02 of Lee and Wu [10] and Kobayashi et al.
[11]. Note that our solution is better then the one by Oulne
[8] who proposed the trial solution that we used. Actually it
is better than any known solution. This is due to the fact that
the minimal property of the Hamilton action integral has

540 }+,84[ 75

19
+ +a?) -+
4096(a + 7)° (5a+47)9} a{128 Ga+y)]

(5a+3y)9]} " “{ Gat+y)' " (Gatdp® "

2
A [4(2a+ »

14515208 3
4Q2a+ )’

963

(46)

I

been used together with the evaluation the action conserva-
tion law.

B. Column stability problem of Atanackovi¢ and Simi¢

In studying the shape of the Pfliiger column of greatest
efficiency Atanackovi¢ and Simi¢ [12] and Atanackovi¢ [13]
derived second-order nonlinear ODEs describing the mo-
ment x(&) in the first buckling mode of the optimally shaped
column. Both these equations can be unified by the two-point
boundary-value problem

1/3
x=()—c) ma<é<b, x(a)=x(b)=0, (51)

where

a=—(\+ MNP and b=— NN (52)

N\ and A\, are the critical distributed load of the Pfliiger col-
umn of constant cross section and the applied dimensionless
axial force, respectively. These two quantities are the first
non-negative roots of the transcendental equation

Ai(= (N + M)A Al AN
Bi(- (\; + M)A P?) T Bi(- AP

(53)

involving the Airy functions.
The results of practical interest for the problem described
above are the slopes x(a) and x(b) at the end points being the
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measures of the reaction forces acting at the supports of the
column. The nonlinear boundary-value problem (51) and
(52) can be solved numerically; however, our goal is to pro-
vide estimates of these slopes by using the conservation law
of the action integral type which we construct next.

First, note that the nonlinear ODE (51) is the Euler-
Lagrange equation for the Lagrangian

1
= Ex + (§x2)”3. (54)
By using the general Noether identity one can establish
that the generators of the form F= %x(&) and f= %f make the
following quantity conserved:

268 = Txx — 633 + 10 f Ldt = const. (55)

When this differential invariant is applied to the
boundary-value problem (51) and (52) it becomes obvious
that the slopes at the end points are related:

b
ax*(a) - bi*(b) =5 f Ldt. (56)

a

Example A. Consider the problem of Atanackovi¢ and
Simi¢ [12,13] in original variables. The independent variable
& in (51) is related to the original variables by é=—[\(1
—t)+)\2])\[2/3, where 0<<r=<1 is dimensionless coordinate
along the column length, while the dependent variable x
—\Zm where m=m(t) is dimensionless bending moment.
Thus the problem reads

lxlu_mxz
NI

m

13
=0 in0str=1,

m(0)=m(1) =0, (57)

where \;=\,/4, (i=1,2).
First of all note that the Lagrangian of the problem is

1 3 _ _
L= Emz - 5{[)\1(1 — 1) + N} (58)
and that the general Noether identity yields the generators
=5m(r) and f=—2[N\;(1-1)+X\,]\, !, which make the fol-

lowing quantity conserved:

_ _ _ 1 3 -
—7mn'1—4[)\1(1—t)+)\2])\1_1{5n’12+5[)\1(1—t)

+ ):2]1/3m2/3} +10 f Ldt = const. (59)

Applying this to the boundary-value problem (57) we obtain
the relation among the slopes at the end points:

1
N 2(1) = (N | + Ny)m?(0) = 5\, f Ldt. (60)
0

The results of Atanackovi¢ and Simi¢ [12] correspond to the
case \,=0 and N\;=18.956 265 591 4—i.e., the Pfliiger rod
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TABLE 1. Prediction of initial slope for the optimized Pfliiger’s
rod.

n min 7 Cp m(0) m(0)

0 -0.402421 ¢,=1.098755 1.098 755  1.418 487

1 —0.404 894  ¢(=1.244 687 1.244 687  1.422 839
c1=-0.238 754

2 —0.405 165 ¢(=1.303 566 1.303 566  1.423 315
c;=-0.456 295
¢,=0.229271

Numerical integration 1.422 185

without concentrated axial load. In this example we want to
estimate the initial slope of the bending moment 72(0). For

such case we have, from (60) with A,=0,
m*(0) = - 51, (61)

where the functional
1
= f L(t,m,m)dt (62)
0

with the Lagrangian L(t,m,m)=%mz—%{[):l(l—t)]mz}“3 ac-
cording to (58) for \,=0. .

Trial solutions m,(f)=cor(1-1)(1+3%,c;t')  with n
=0,1,2 have been used and the results presented in Table I

are obtained from
m(0) = V=5 min /, (63)

where I=] (l)L(t m,m)dt is minimized with respect to adjust-
able constants (d, I 0). Note in Table I how the estimates of

the initial slope m(O) directly from the trial solution are poor
when compared those obtained from (63).

C. Arbitrary unforced rheo-linear problems

If the governing equation of a dynamical system is of the
rheo-linear form

LOF+fi(Dx+fo()x=0, inty=<
with arbitrary functions f,(z) # 0, f,(7), and f,(7), a conserva-

tion laW Of the fOI‘m

(65)

sts<ty, (64)

x(t)x(t)exp(

holds for generating functions taken as F=3 and f=0. Con-
sequently, at the exact solution of this klnd of problems the
following relation is valid:

x(t)X(t)exp( f %dr) := f, ! (xz_&xz>exp< f f;z;)m

(66)
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Note that in the case of the undumped (f;=0) equation
(64), relation (66) reduces to

§ <x2 - @x2>dz. (67)
fa

Example B. Suppose that we want to estimate the initial
slope x(0) for the boundary-value problem described by the
Weber equation

XD = f

I

x(0)=1, x(l) =0.

Lo (1, )
X+|—-=-t"|x=0, iIn0=sr=
4 2

1
2,
(68)

An exact solution of this problem can be expressed in terms
of the Hermite polynomials and the Kummer confluent hy-
pergeometric function, and the exact value that we are look-

ing for is
19 311 19 31
2\ = || 4 F)\ s | =3 Fi\ =75~
16 16 2 °4 16 2 °4

x(0) =
3 11 11 19 11 3 1
3\ — |\ F\\ == | -4\ = |\ F\| =55
16 16 2 4 16 16 2 4

=0.084 161 7.

This result can be easily estimated from the relation

1/2 1
x(0)=-— J [x2 - (— - tz)xz}dt, (69)
0 4

which follows for this problem from (67). If we
choose a trial function X(f)=1+c(r—1)t satisfying the
boundary  conditions in (68) and evaluate the
functional in (69), we obtain J(c)=—[§[#~(;—-)7]dt
=[-1120+c(308+2213¢)]/13 440, which can be minimized
[3,.J(c)=0] to yield an optimal value for the adjustable con-
stant c=—325. Then J(c)=—mgae=-0.084 130 7==x(0).
This value underpredicts the exact result for only 0.037%.

D. Derivation of the Rayleigh quotients
from conservation laws

The structure of the Lagrangian for the formally self-
adjoint homogeneous ODE of the 2kth order,

k

d dix
EO -1 5(1@(05) =0, (70)
is
1 , d'x \?
=5§)ﬁ(1)(;> , (71)

and for each such a problem it can be proved that the corre-
sponding Noether identity will be satisfied by generators of
the form F =%x and f=0. This means that the action integral
conservation law exists for each such a problem. Here we are
interested in the second-order (k=1) and fourth-order (k
=2) boundary-value problems of the Sturm-Liouville type—
i.e., the self-adjoint eigenvalue problems.

PHYSICAL REVIEW E 78, 056604 (2008)

For k=1 consider the Sturm-Liouville equation of the
form

= (f1(01) + [fo() = Ngo(1) ]x =0 (72)

in t € [a,b] with the Lagrangian
1 1
Lit.x.%) = SO+ J[fol)) - Mg, (73)

which leads, with F =%x and f=0 used in (30), to the action
conservation law of the form

1
Eflxx - f L(t,x,x)dt = const. (74)

When the Lagrangian (73) is introduced and (74) applied to
the end points the following algebraic relation is obtained:

b b
[fx]; - f (f13 + fox?)dr + \ f gox’dt=0, (75)
where from the well-known Rayleigh quotient follows

b
f (1% + fox?)dt = [f xi]]

b
f goxzdt
a

Similarly, the Rayleigh quotient of the form

N

(76)

b
f (fzjéz +f1x2 +f0x2)dt +[foxx + (fzx - frx)¥ _flxx]z
A= —

b
J (gox” + g1 X)) dt - [g1xx1]

(77)

can be derived for the eigenvalue problems of the fourth
order,

(0% ={[f1(t) = g () ]x} + [fo(r) = Ngo(t) ]x =0,
(78)

whose Lagrangian is

L9 = 3508 + A0 - Ay (01

# S0 Ao} 79)

and the action conservation law is (since again the generators
are F=]§x and f=0)

1
E[x(fz)'é)' — foxx = (f) = hg)xx] + f L(t,x,x,X)dt = const.

(80)

It is a common practice in evaluating the first eigenvalue
from the Rayleigh quotients for a particular boundary-value
problem that a minimization of the quotient is performed
over a class of trial functions satisfying the boundary condi-
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TABLE II. The first eigenvalue for parallel plates.

PHYSICAL REVIEW E 78, 056604 (2008)

TABLE III. The first eigenvalue for cylinder.

Trial solution A Trial solution N
1-72 1.707 83 1-72 2.828 43

T 1.684 74 T 2.756 74
cos(—1) cos(=1)
1—(T+b)P+br* 1.682 15 1-(T+b)P+br* 2.709 27
Exact eigenvalue: 1.681 60 Exact eigenvalue: 2.704 36
tions. It is also true in our case, and we present three illus- T= 11,5, f) -0 and 191,7: 0 (86)

trative examples in order to show accurate estimations of the
eigenvalues by minimizing not just the quotient, but the
functional as well.

Example C: Graetz problem for parallel plates. Here we
study the estimation of the first eigenvalue of the Graetz
problem for parallel plates. The boundary-value problem to
be solved is

F+N(1-Px=0, in0=<r<1, %0)=0, x(1)=0.

(81)

At the exact solution of this problem the following constant
holds:

1
x(0x(0)|'5y = f [x2 = \2(1 - A)x*]dr, (82)
0

since the functional for the differential equation (81) is of the
form

1
I(t,x,%) = % f [%% = N2(1 - )x?]dt. (83)
0

As the boundary conditions for this problem, make the
right-hand term of Eq. (82) vanish; we are faced with the
situation where the action integral is identically equal to
Zero:

I(1,x,%) = 0. (84)

This fact makes a possibility to evaluate an eigenvalue of the
problem from the ratio
1
f Wdt
0

e —
f (1 = A)x2dr
0

(85)

This can be done by using in Eq. (85) instead of x(¢) various
trial functions x(7) satisfying the boundary conditions to the
problem. For example, one might chose a polynomial of the
form x(f)=1-¢* or a circular function like x(r)=cos(51).
Table II summarizes the results for various trial functions.
The trial function x(¢)=1-(1+b)¢>+bt* having one addi-
tional parameter b deserves additional comment. Besides the
condition that the functional has to vanish in this problem,
we have still a possibility to minimize, say, by the Ritz
method, the functional. In other words, if we have an addi-
tional unknown, except \, say, b, we may use two equations

to determine both N and b. The value of the eigenvalue A\
given if Table II, for trial function containing b, follows the
form of Eq. (85) as

V33 [35-14b+ 1157

=V oo 37 (87)

2 99 -22b+3b
for arbitrary b, but an optimal value of b appears to be b
:%(123—%’3 301)=0.323 654 as obtained by minimizing
the functional at the approximate solution,” and this leads to
the value of N presented in Table II.

The exact eigenvalue given in Table II for this problem is
the first root of the Kummer confluent hypergeometric func-
tion lFl(l;—)‘,%,)\):O (see [14]). Thus, our optimized estima-
tion of the first eigenvalue underpredicts the exact value ab-
solutely for —0.023 or for 0.033%.

Example D: Graetz problem for a cylinder. The
boundary-value problem to be solved is

K+x+ N (1-PAix=0, in0<r=<1,

x(0)=0, x(1)=0. (88)

The functional in this case is

1
I(t,x,%) = % J %2 = N2(1 = H)x*]e dt. (89)
0

Using the same type of trial functions as above, but this
time evaluating A from
1
f tidt
0

Nz (90)
f (1 - 2)xdt

0

we obtain results as presented in Table III.

The exact eigenvalue given in Table III for this problem is
the first root of the Laguerre polynomial L _5)4(\)=0. The
adjustable trial function X(r)=1~-(1+b)r*+bt* leads to

’It appears that one might minimize \, given by Eq. (85), with
respect to the parameter b.
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210 [3-2b+1
)\ = 2 (9 l)

2 15-6b+b
and after minimizing A, an optimal value of b is found to be
b=3-16, leading to the result that overpredicts the exact

value of the first eigenvalue for just 0.18%.

Change in boundary conditions. Suppose we have to
evaluate the first eigenvalue for the problem like in (88), but

for boundary conditions corresponding to the constant heat
flux at the tube wall:

K+x+ N1 -Pix=0, in0<r=<1, x(0)=0,

x(1)=1. (92)

In this case we have to evaluate

1
—x(1)+f xX2dt
[ — (93)

j (1 - )xdt

0

at some trial function satisfying boundary conditions in (92).
An appropriate trial function containing adjustable constant ¢
is X(1)=1+c+3(1-2¢)r and leads to

- 6\7\=35+2(=3+ )¢

- [ . (94)
V2199 + ¢(760 + 79¢)

The optimal value, obtained from dJA=0, is ¢
=(=7163—+v24 577 005)/1994 so that finally

14(3913 + 124577005)
=6.17405.  (95)

29321

This overpredicts the exact value’ A=6.125 87 for just
0.78%.

Example E. Consider another problem of lateral displace-
ment of an inextensible elastic rod pinned at both ends and
loaded by two axial concentrated forces, like in Example 1B,
but this time governed by the following fourth-order
boundary-value problem [2], p. 172:

(3= +Ni+60x=0, withx(x1)=i(*=1)=0.

(96)

By identifying the rheonoms of this problem f;(¢), i=0,1,2,
and g,(1), i=0,1, in (78) as f,=3-1%, fi=g,=0, f,=60, and
g1=1, we have the Lagrangian of the form (79):

1 N
L(t,x,%,%) = 5(3 -)¥% - 5;&2 +30x2. (97)
The action conservation law of the form (80) is

Note that the exact value is the first root of the transcendental
equation

Ne ™MLy _p)4(N) +2L{y_gs(M)]+ 1=0.

PHYSICAL REVIEW E 78, 056604 (2008)

TABLE 1V. The first eigenvalue of (96) with various trial
solutions.

Trial solution A

(1-7%) (3433-59912—531*+31%) 31.3607
(1-72) (39-672—1%) 31.3548
(1= [9a+9(a+5)2— (6a+25)"] 31.3529

Estimate [2], pp. 215-217: 31.350 96 <A <31.354 85

1
5[(3 — 1) (xX — X¥) — 204K + Axx] + f L(t,x,%,%)dt = const.

(98)

To find the smallest eigenvalue N for this problem, we apply
the conservation law (98) to the endpoints and conclude, due
to the nature of boundary conditions) that the functional

+1
sz L(t,x,x,X)dt=0, (99)
-1

which is equivalent to the following Rayleigh quotient of the
type (77):
+1

[(3 — A)i% + 60x*]dt
A= — . (100)

+1
f xdt
-1

We used three trial functions X(¢) satisfying the boundary
conditions to the problem and evaluated the eigenvalue A
as presented in Table IV. The first two trial polynomials
are without an adjustable parameter and A is calculated
directly from (100). For the third polynomial, containing
adjustable parameter «, two equations are used: zero value

of the functional (99) and d,/=0 evaluated at trial solution,

87 285-840 998 895
2B OREN231.3529 and «

to determine both A=
—224 485-61840 998 895
= 90249 =-4.41539.

E. Conservation laws for some fourth-order ODEs

Recently Everitt et al. [15] reported the representation of
the solutions of four fourth-order-type (named as Bessel-
Laguerre-Legendre-Jacobi) ordinary differential equations.
All these equations are written in formally self-adjoint form,
and we are able immediately to write down action conserva-
tion laws for each of them. Namely, by simple identification
of the rheonoms f;(¢), i=0,1,2, and g,(¢), i—0,1, in (78) we
can establish conservation laws of the form (80) with the
Lagrangians of the form (79).

Example F. Bessel-type fourth-order equation. For the dif-
ferential equation of the form

(%) = [(9 " + 8tM~Mx] = A\H(\2 + 8M Hx =0,
(101)

for all 7€ (0,%), where M € (0,%) is a positive parameter
and N € C, we have f,=t, f;=9r"'+8tM~!, fy=g,=0, and
20=N’t(\>+8M~") and the Lagrangian
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1 1 1
L(t,x,%,%) = 5:552 + 5(9:-1 +8tMHx% - va +8M N2,

(102)

so that the conservation law is
1
E[I(xx —XX) +xxX = (97" + 8tM V) xx] + f L(t,x,%,%)dt

= const. (103)

Example G. Laguerre-type fourth-order equation. For the

differential equation of the form
(Pe™5%) = [2e (At +t+ D] —=Ne7'x=0,  (104)

for all ¢ € (0,%0), where A € (0,) is a positive parameter and
N eC, we have fo,=r’e”, fi=2¢(At+t+1), fy=g,=0, and
go=¢" and the Lagrangian

1
L(t,x,%,%) = Ee-f[ﬂx@ +2(A+t+ D2 =nx%], (103)

so that the conservation law is

%e"[tz(xjé'— i) = t(t = 2)xk = 2(At + t+ Dxx]  (106)

+ f L(t,x,x,X)dt = const. (107)

Example H. Legendre-type fourth-order equation. For the
differential equation of the form
((1=)%)" = {[8+4A(1 - A)]x} =xx=0, (108)

for all re (—=1,+1), where A € (0,) is a positive parameter
and \ € C, we have f,=(1-72)2, f,=8+4A(1-1*), fy=g,=0,
and go=1 and the Lagrangian

1
L(t,x,%,%) = E{(l — 2% +[8 +4A(1 - ) ]2 = M2,

(109)

so that the conservation law is

%{(1 —12)2(xx = x%) — 41(1 = P)xi — [8 + 4A(1 — ) Jxx}

+fL(t,x,x,jc')dt=const. (110)

Example 1. Jacobi-type fourth-order equation. For the dif-
ferential equation of the form
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((1-0**2*1+0%) -2(1 - [a+3+t(a+1)
+2A(1 + )] =N (1 = )% =0, (111)

for all re(-1,+1), where A e(0,%°), ae(-1,°), and \
e C, we have f,=(1-1)*?(1+1)?%, fi=2(1-t)""Ta+3+t(a
+1)+291A(1+1)], fy=g,=0, and gy=(1-1)* and the La-
grangian

1
L(t,x,%,%) = 5(1 021+ 0’2+ (1= [a+3+t(a+1)

1
+2A(1 + 1) % - 5)\(1 -2, (112)

so that the conservation law is
1
5(1 -0)4(1- )2 (xx = x%) = (1 = tz)[a + (a+ 4)1f]xx
—2(1 =O[a+3+tla+1)+2°TA(1 + 1) ]xx}

+ f L(t,x,x,X)dt = const. (113)
Once the boundary conditions are specified for any of the
ODE:s in examples III F-IIT I further study of the boundary-
value problems becomes available via their conservation
laws.

IV. CONCLUDING REMARKS

Action conservation laws are derived from the invariant
properties of the Lagrange-D’Alembert differential varia-
tional principle. Their general form as in Eq. (1) for the
second-order ODEs and in Eq. (4) for the fourth-order ODEs
consists of action integrals and the functions depending, ex-
cept for the independent and dependent variables, on the de-
rivatives up to the order by one less than the original prob-
lem. So they are the first integrals of the Euler-Lagrange
equations. The structure of these conservation laws is closely
related to the natural boundary conditions of the variational
problem, and this fact makes it possible to develop a reliable
approximate method for direct study of various boundary-
value problems in physics and mechanics once the conserva-
tion law is applied to the end points.
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